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Influence of noise on crisis-induced intermittency
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The experimental study of crisis-induced intermittency in the asymmetric double-well Duffing
oscillator shows that small additive noise can change drastically the properties of a dynamical system
after the crisis. For example, the probability distributions inside the left and the right wells may be
identical for the oscillator with added weak noise, contrary to the strongly asymmetric distributions
observed in the system without noise. The large attractor created in the crisis may be decomposed
onto a pair of repellers which are successors of two smaller attractors coexisting before the crisis.
After the crisis, noise changes independently the mean lifetime of each repeller.

PACS number(s): 05.45.4+b, 05.40.+j

The chaotic time evolution of a dynamical system can
undergo a sudden change when a control parameter A of
the system exceeds the critical value Ag. Such an event
is called a crisis [1] and we can observe different kinds
of behavior independent of a particular configuration in
phase space for A < Ag. For example, if before the cri-
sis the strange chaotic attractor coexists with another
attractor, and for A = Ag this chaotic attractor touches
its basin boundary, then for A slightly greater than g
transient chaos may be observed [2, 3]. In this boundary
crisis the attractor is destroyed and replaced by a strange
repeller, which is characterized by positive escape rate «
and finite mean lifetime 7, K = 1/7. A trajectory, which
is initiated inside what had been the basin of the at-
tractor before the crisis, is at the beginning attracted to
the repeller and lives in its immediate neighborhood for a
while. Then, the trajectory leaves this region forever and
approaches the attractor that survived the crisis. Inves-
tigating a large number of trajectories started from ho-
mogeneously distributed initial points, we can determine
the distribution of lifetimes on a given repeller. Usually,
for large time ¢ this distribution has an exponential form

G(t) = Goe™™* . (1)

Another kind of behavior may arise when two coexist-
ing strange attractors touch at their mutual basin bound-
ary. Then, for A > ), crisis-induced intermittency may
be observed [4-6]. In this case, two attractors merge into
one large attractor which governs the stationary evolu-
tion after the crisis. During this stationary evolution the
trajectory jumps only very rarely between the regions
corresponding to the two former attractors, and it spends
most of the time confined to the first or to the second re-
gion. Thus, it is natural to decompose the large attractor
appearing after the crisis into a pair of repellers which are
the remnants of the two attractors that coexisted before
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the crisis. Crisis-induced intermittency is a particular
case when the mean lifetimes of both repellers are long
but one can easily generalize this concept to many coex-
isting repellers of arbitrary lifetimes. One long trajectory
may enter and then escape the neighborhood of a partic-
ular repeller many times, and therefore this general type
of behavior is called multitransient chaos [7].

Both phenomena, i.e., transient chaos and crisis-
induced intermittency, may be observed clearly only for a
control parameter ) sufficiently close to the critical value
Xo- Usually in such a critical range of the control param-
eter small external noise imposed on deterministic dy-
namics has a large influence. Noisy repellers were stud-
ied in computer experiments [8] and the main results of
these investigations may be listed as follows: (i) in the
presence of small noise the distribution of lifetimes has
still the exponential form given by Eq. (1), but with es-
cape rate x strongly dependent on noise amplitude o; (ii)
the dependence x(o) is not monotonic and for fixed con-
trol parameter there is a well defined noise level o* > 0
such that x(c*) is minimal (i.e., the corresponding mean
lifetime 7(0*) is longest); (iii) external noise may either
increase or shorten the mean lifetime, and the particular
response of the system depends not on the noise am-
plitude o or the control parameter A separately, but it
depends on the dimensionless parameter p = o /(A — Ao).
These results were obtained from investigations of tran-
sient chaos where a single strange repeller coexists with
a stable attractor. In the current paper we report on the
results from an experimental study of crisis-induced in-
termittency in the presence of small external noise. The
attractor created after the crisis may be decomposed into
a pair of weakly repulsive repellers. Therefore, it is inter-
esting to check if added noise changes independently each
repeller or if the reactions of both repellers are somehow
correlated. One can also expect that the changes of the
repellers (which are the basic components of the large
attractor) should be reflected in the properties of this
attractor.

It should be stressed that we investigate a dynamical
system which has already passed the crisis, and switch-
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ing between two repellers may be observed even without
external noise. This configuration is different from that
one studied in Refs. [9-11] where the control parameter
A was less than Ao, and the observed behavior was called
noise-induced crisis. In that case there were two coexist-
ing attractors, and only because of the nonzero intensity
of noise could the trajectory jump from one basin of at-
traction to the other. However, it is interesting that the
scaling of mean lifetimes found in the precrisis configu-
ration

7(0,A) = 07 7g(|1A = Aol /0) (2)

seems to have a dependence on the control parameter A
similar to the postcrisis configuration, i.e., not directly
via A but via the dimensionless variable p. In Eq. (2)
g denotes a nonuniversal function and v is the critical
exponent connected with the deterministic crisis. Partic-
ular forms of both relations are different because for fixed
A (after crisis) the dependence 7(o) is not monotonic [8],
while before the crisis the corresponding dependence in-
troduced in Refs. [9-11] is monotonically increasing with
decreasing noise level o. In our experiment we kept the
control parameter fixed (A > A¢) and the noise ampli-
tude was changing in a given range. Thus, we were not
interested in the question of how noise can modify the
dependence of 7 on the control parameter A. Instead,
we checked how the important properties of a dynami-
cal system (for fixed control parameters) are sensitive to
external noise.

In our experiment we used an analog simulator based
on multiplier devices assembled in such a way as to sim-
ulate the Duffing oscillator

E(t) +vy&(t) —azx(t)+Pz3(t) = Asin(2nvt) +P+£(8) ,
®3)

where a nonzero bias v ensures the asymmetry of the
system and £(t) stands for the Gaussian noise of intensity
D and variance I, (£(¢)é(t + s)) = 2D4(s).

We have made the circuit by means of a minimum
component technique developed in our laboratory and
widely described elsewhere {12, 13]. The main compo-
nents of the circuit were two integrators connected, in a
loop, with two multipliers. The multipliers allowed us
to get a cubic term in the Duffing equation. The off-set
of the first multiplier provides the bias term 1. A noise
generator and a sine generator applied to the input of
the first integrator gave the stochastic fluctuation and
the drive, respectively. In a real analog experiment it is
not possible to get a strictly é-correlated noise. We could
only approximate this idealized noise by an experimental
signal u(t) such that

WOt +9) = = exp(-s/m) , (4)

where d and 7 are the intensity and the correlation time
of the experimental the noise. Such noise may be ob-
tained by passing the noise of wide bandwidth through a
linear filter

u(t) = —1/7ou(t) + w(t) , (5)
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where w(t) approximates the Gaussian white noise of the
unit variance (the so called Wiener process). For s — 0
we can get the connection with a directly measured quan-
tity: the root mean square noise voltage o = 4/(u2(t)),
o? = 4 . (6)
To

In our experiment o varied in the range between 0 and
9.5 mV, while the correlation time 79 = 4.7 us. Compar-
ing the cutoff frequency vyt of our noise generator with
the resonance frequency v of the Duffing oscillator, at
the minimum of the potential (vcut = 13314), We can con-
sider our generator as a source of white noise. We checked
the stability and confidence of the described setup by an
experimental test of the characteristic quantities of the
system, such as the resonance frequency vy = 300 Hz, the
half-width of the resonance curve A = 50 Hz, and the po-
sitions of potential minima, x7 = —3V, zp = 3V. Spe-
cial attention was paid to test a symmetry of the system
for the case of vanishing bias, ¥ = 0. Other electronic
parameters characterizing our analog simulator were the
following: the voltage amplitude (peak to peak) of the
forcing V,p. = 0.28 V and the frequency of the drive
Vexpt = 303.3 Hz. After a suitable time rescaling, the
parameters of Eq. (3) corresponding to the experimental
ones obtained the values: a = 1, § = 0.12, v = 0.23,
A =398V, (i.e, A=111),v =0.227,9 = 2.56 x 10~*
for large potential asymmetry, and ¥ = 6 x 10~3 for the
nearly symmetrical case, ¥ = 120. Data acquisition was
made by means of a digital oscilloscope (Data Precision
model DATA 6000) with a sampling frequency v, = g
for lower noise (¢ < 6 mV) and v, = 3.3y for higher
noise. It must be stressed that, besides the controlled
noise of amplitude o obtained from the generator, intrin-
sic experimental noise of nonzero amplitude oy was also
present. The total amplitude of noise, which disturbed
the deterministic evolution of the investigated system,
should therefore be written as oot = 09 + o (in our ex-
periment 09 < 0.2 mV and we can put oot = 7).

Two kinds of measurements were performed. In the
first series of experiments the marginal probability dis-
tributions P(x) were recorded for different noise levels o
and for a few different values of bias. Examples of such
distributions are shown in Figs. 1 and 2. The plots in
Fig. 1 correspond to the nearly symmetrical case when
the depth of both wells is approximately the same (bias
¥ = 6 x 107°). It is well visible that the noise of a rel-
atively large amplitude does not influence significantly
the probability distribution P(z). The asymmetry ra-
tio ¢ = Pgr/Pr, where Pg(P) is the total area un-
der the right (left) peak, is nearly independent of o in
the whole range of applied noise ¢ close to 1. On the
other hand, Fig. 2 refers to the case of strong asym-
metry when the left ‘well is deeper than the right one
(bias 4 = 2.56 x 10~*). Examples of four distributions
P(z) obtained for fixed system parameters and differ-
ent noise levels are shown in Fig. 2. In this case the
asymmetry ratio ¢ is systematically increasing with the
increase of noise amplitude o. It is evident that such
important characteristics of the dynamical system as the
joint probability distribution p(z) are drastically changed
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FIG. 1. Distribution P(z) for the nearly

3 symmetrical potential V(z) (bias ¢ = 6 x
R 107®%) and two different noise amplitude, o:
(a) o = 0, asymmetry ratio ¢ = 1.11; (b)
o = 6.5 mV, ¢ = 1.04. For intermediate
values of o the plots and corresponding values
of ¢ are similar. The bin size on the z axis is
1/512.
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by noise. Consequently, the marginal probability P(z)
is also changed. Thus, all other mean quantities calcu-
lated with respect to this distribution must be affected
by noise. We want to stress that for fixed system pa-
rameters and noise amplitude o the changes caused by
noise are stable in time. In particular, the shape of the
distribution P(z) and the asymmetry ratio ¢ may be eas-
ily repeated. Recording longer and longer time series we
could observe that the corresponding distributions P;(z)
were converging to the same stable asymptotic distribu-
tion Py (z) = P(x).

In the second series of experiments the distributions of
lifetimes inside the left and right well were determined.
For each given system, parameters and noise amplitude
o, one very long trajectory was observed. The residence
time inside a particular well was measured as the time in-
terval between two successive transitions of z(t) through
zero. Thus, two sequences of time intervals were recorded
and stored in the computer and then these sequences
were used to produce the distribution of lifetimes inside
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FIG. 2. Distribution P(z) for the asymmetric potential

V (z) (bias 1 = 2.56 x 10™*) and different noise amplitudes o:
(a) o = 0, asymmetry ratio ¢ = 0.16; (b) 0 = 1.4 mV, ¢ =
0.30; (c) 0 = 4.2 mV, ¢ =0.56; (d) o =7 mV, ¢ = 0.96.

the left and right well, respectively. In Fig. 3 examples
of such distributions obtained for fixed system parame-
ters and three different levels of noise are shown. More
precisely, G(t) denotes a probability that the trajectory
does not leave a given well before time t. The common
feature of all presented distributions is the existence of
two different time scales. For small ¢ a very fast decay
dominates, while for ¢ > 0.03 s, much slower decay is
observed. Straight line fits are performed only for the
flatter parts of the plots, and whenever we consider the
escape rate k or mean lifetime 7 we have in mind the
parameters obtained from these fits. The slow decay is
connected with parts of time evolution during which the
trajectory is confined to one particular well. Thus, the
estimated pair of escape rates k characterizes a pair of

In G(t)

In G(t)

§
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FIG. 3. Distribution of lifetimes G(t) inside the left (L)
and right (R) wells for fixed system parameters (the same as
in Fig. 2) and different noise amplitudes: (a) ¢ = 9.4 mV;
(b) 0 = 2.4 mV; (c) o =0.
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repellers which are the remnants of the attractors coex-
isting before the crisis. The steep parts of the plots in
Fig. 3 are connected with a short lasting cycling of the
trajectory above the barrier which separates two wells.
A similar superposition of two individual chaotic tran-
sients of different mean lifetimes was observed in the nu-
merical investigations of the Duffing oscillator [14]. It is
evident that applied noise has no remarkable influence
on the fast decay. On the contrary, the escape rate « of
slow decay is strongly noise dependent. In Fig. 4 the
dependence of mean lifetime 7 versus noise amplitude o
is shown. The system parameters were fixed at values
giving large asymmetry of the potential V' (z) [notice the
change of scale in Figs. 3 and Fig. 4 for the left (L)
and right (R) repeller|. Therefore, the shape of the 7(o)
dependence for the left repeller may be different from the
shape of the 7(0) dependence for the right repeller. It
should be also noticed that the relative change of mean
lifetime is much larger for the left repeller than for the
right one. Thus, the influence of noise on the repellers Ag
and Ay, is different. This interesting lack of correlation
between both repellers is a natural consequence of the
fact that each of them evolves in a different way when
control parameter is passing the critical value. In the
current analog experiments we were not able to observe
the evolution of coexisting attractors for increasing the
control parameter A in a systematic way. However, nu-
merical solutions of Eq. (3) (without noise and for other
control parameters close to the experimental ones) sug-

gest the following sequence of events [15]. For A’ < /\gR)

two different attractors Ay and Ag coexist. For A = /\SR)
the right attractor Ag collides with the basin boundary,
and for /\SR) <AL A((,L) we can observe transient chaos.
The final state is then connected with the left attractor
Ayp, but this state may be reached through two different
transients. The shorter one can be seen when a starting
point is chosen inside the existing for A < /\SR) basin of
attractor Ay. The longer transient is connected with the
repeller Rp just born at A = /\((,R). This transient may
be observed for starting points placed inside the basin of
attraction corresponding to the attractor Ap which ex-
isted for A < /\S,R). For A = /\S,L) the left attractor Ay
also collides with the unstable orbit, and for A > /\((,L) we
can observe crisis-induced intermittency with the char-
acteristic jumps between Ry, and Rg. Basing on that we
expect a similar evolution in our analog experiment.
Due to the strong asymmetry of the potential V(z),

300
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the right well is shallower than the left one. If the re-
sults of Ref. [8] may be applied independently to the
repellers Ry, and Rp, then we should introduce two dif-
ferent dimensionless parameters pp = o/(A — /\((,L)) and
pr = o/(A — /\((,R)), which link unambiguously the re-
action of a particular repeller with the values of noise
amplitude and control parameter. Therefore the same
noise of amplitude ¢ may have a different influence on
each repeller. However, we are not able to give the exact
values of p; and pgr because the critical parameters /\(()L)
and /\((-,R) could not be determined with satisfactory accu-
racy in the analog experiment. Therefore, the amplitude
of applied noise o instead of dimensionless parameter p
is shown on the horizontal axis in Fig. 4, and we are not
able to overlay two plots from Fig. 4 corresponding to the
left (L) and the right (R) repellers on one common plot
(as it was done in Ref. [11]). In order to verify systemat-
ically the scaling hypothesis for the currently discussed
crisis-induced intermittency with noise, one should vary
not only the noise level o but also the control parameter
A (which was fixed in our experiment). Different shapes
of dependence 7(\, o) shown in Fig. 4 do not contradict
the scaling hypothesis because they may correspond to
two different parts of the same plot 7(p) determined for
two different ranges of dimensionless parameter p.

In the computer experiments it was shown (8] that for
p < 2.5 noise can stabilize transient chaos, while for
p > 2.5 the estimated mean lifetime is always shorter
than in the noiseless case. In a real experiment the con-
trol of system parameters is more difficult and we are
forced to achieve a compromise between two opposite ten-
dencies. When we want to see transient chaos which is
clearly elongated by noise, we should deal with a repeller
of very long mean lifetime. It means that the control
parameter A should be very close to the critical value
Ao. But then the range of noise amplitude o, where elon-
gated transients may be observed, is very small and may
be below the level of intrinsic noise oo, which is always
present in a real experiment. Therefore elongated tran-
sient should be observed for A sufficiently far from Aq. In
practice, we had to find an intermediate value of A which
was sufficiently large with respect to positive o¢ and si-
multaneously sufficiently close to Ag in order to ensure
the long mean lifetime. Thus, it is not surprising that
we observe a monotonically decreasing dependence of the
mean lifetime 7(c) for the left repeller and an elongated

transient for the right one (,\S,R) < /\((,L) and therefore for

(2]

3

(L)

7(0)/T
7(a)/T

15 15

(R)

FIG. 4. Dependence of the mean lifetime
7 connected with the left (L) and right (R)
repeller versus noise level o (in mV) for fixed
system parameters (in the experimental cir-
cuit the period of the driving force T = 3
ms).

0.0 o 9.5 0.0 o

9.5
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a fixed o, pr < pL).

One remark should be added here. The nonmonotonic
reaction of the deterministic system on external noise
and the existence of specified noise amplitude o*, for
which transient chaos possesses the longest mean life-
time, have some similarities with stochastic resonance
(16, 17]. In this phenomenon many important charac-
teristics (e.g., signal to noise ratio) are maximized for a
certain resonant noise intensity. However, we must stress
that stochastic resonance is observed for completely dif-
ferent parameters, namely, large noise intensity and very
small amplitude of driving force. This amplitude is so
small that a purely deterministic trajectory without the
help of noise cannot jump over the barrier separating two
wells of the potential. On the other hand, the intensity
of the noise is so large that even without an external
driving force the trajectory may switch between both
wells in a purely stochastic way. In the current study
of noisy crisis-induced intermittency the proportions are
exactly reversed. For example, noise to drive the ratio
¥ /X is equal to 6.5% for the values of parameters cor-
responding to Fig. 2(d), while the mean unmodulated
barrier height AV = (AVg + AVL)/2 is equal to 2.19
in comparison with the drive amplitude A = 1.11. Here,
AVe . = |V(zr,L) — V(zo)| and zg, =L, and z¢ are the
local extremes of the asymmetric double-well potential
V(z). In this case the amplitude of the driving force
is sufficiently large to enable hopping between two wells
without the assistance of stochastic perturbation. On the
other hand, the noise intensity is so small that without
external force there are no jumps over the barrier. Al-
though stochastic resonance and noisy intermittency are
observed for quite different ranges of parameters, they
nevertheless have some common features [17]. The fact
that noise of increasing intensity can wash out asym-
metry of the potential V(z) would not be surprising in
the limit of large noise amplitude. However, the results
shown in Fig. 2 were obtained in the limit of weak noise
and therefore they should be explained as an unusually
large sensitivity of the deterministic system on a small
stochastic perturbation.

Before the final conclusions we want to add a comment
about the decomposition of the large postcrisis attractor
onto the pair of repellers Ry, and Rg. Obviously, this
procedure is not completed because the entire attractor
includes not only orbits which are localized on a par-
ticular repeller but also long orbits which link both re-
pellers. Moreover, besides the pair of repellers Ry and

Rp there exists another strongly repulsive repeller R,
which manifests its existence during the initial fast decay
shown in Fig. 3. Recently, a similar critical configura-
tion was investigated [18] in the logistic map in terms of
the thermodynamical formalism. It appears that three
main components of the entire attractor: Ry, Ry, and
Rp play different roles in the description of the attrac-
tor. As far as we are interested in the geometrical prop-
erties, such as the capacity or the correlation dimension,
the pair of repellers Ry, and R approximates quite well
the corresponding characteristics of the large attractor.
However, when we are interested in the dynamical prop-
erties, such as the Lyapunov exponent or the metric en-
tropy, the contribution of the repeller R is predominant.
Numerical experiments suggest that in the Duffing oscil-
lator the configuration may be even more complicated,
and we can observe crisis-induced intermittency between
three as well as between four coexisting repellers (see
Figs. 3 and 4 in Ref. [14]). In the current analog experi-
ment we were interested in the geometrical properties of
the large postcrisis attractor; for example, in the influ-
ence of small noise on the probability distribution P(z).
Therefore, we could decompose the entire attractor onto
the pair of long-lived repellers Ry, and Rp.

In the final conclusions we want to stress once again the
exceptionally important role of small noise in the investi-
gations of crisis-induced intermittency. When the control
parameter A of the investigated system is close to the crit-
ical value )¢, the level of noise must be known and taken
into account as one of the system parameters. The study
of noise-induced intermittency [9-11] (for A < A¢) and
crisis-induced intermittency with added noise (A > o),
as discussed here, indicates clearly that a proper compar-
ison between two similar experiments requires the use of
properly rescaled system parameters. Existing after the
crisis the large attractor has very unusual, strongly noise
dependent properties. Such sensitivity of the dynami-
cal invariants on noise amplitude is not known for other
chaotic attractors, which exist sufficiently far from crisis.
Therefore, the concept of multitransient chaos seems to
be more suitable in the analysis of system behavior for
A close to Ag. According to this approach we can ana-
lyze the influence of noise on each repeller independently.
In particular, we can normalize probability distribution
separately for the right and the left repeller. Then the
obtained two different distributions Pz (z) and Pgr(z) de-
pend only weakly on noise level.
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